Apache Kafka:与Storm集成(二)
创建螺栓
Bolt是一个将元组作为输入、处理元组并产生新元组作为输出的组件。螺栓将实现IRichBolt接口。在这个程序中, WordSplitter-Bolt和WordCounterBolt用于执行操作。
IRichBolt 接口有以下方法:
Prepare:为螺栓提供执行环境。执行器将运行此方法来初始化喷口。
Execute:处理单一输入元组。
Cleanup: 当螺栓要关闭时调用。
declareOutputFields:声明元组的输出模式。
让我们创建SplitBolt.java,它实现把一个句子分成单词的逻辑。CountBolt.java实现了把独特的单词分开并计算其出现次数的逻辑。
SplitBolt.java
import java.util.Map;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;
public class SplitBolt implements IRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for(String word: words) {
word = word.trim();
if(!word.isEmpty()) {
word = word.toLowerCase();
collector.emit(new Values(word));
}
}
collector.ack(input);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
@Override
public void cleanup() {}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
}CountBolt.java
import java.util.Map;
import java.util.HashMap;
import backtype.storm.tuple.Tuple;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;
public class CountBolt implements IRichBolt{
Map<String, Integer> counters;
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.counters = new HashMap<String, Integer>();
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String str = input.getString(0);
if(!counters.containsKey(str)){
counters.put(str, 1);
}else {
Integer c = counters.get(str) +1;
counters.put(str, c);
}
collector.ack(input);
}
@Override
public void cleanup() {
for(Map.Entry<String, Integer> entry:counters.entrySet()){
System.out.println(entry.getKey()+" : " + entry.getValue());
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
}提交到拓扑
Storm拓扑是一个节俭的结构。TopologyBuilder类提供了简单易行的方法来创建复杂的拓扑。TopologyBuilder类有设置喷口(setSpout)和设置螺栓(set bolt)的方法。最后,TopologyBuilder使用createTopology方法来创建拓扑。shuffleGrouping和fieldsGrouping方法有助于为喷口和螺栓设置流分组。
本地集群:出于开发目的,我们可以使用LocalCluster对象创建本地集群,然后使用LocalCluster类的提交拓扑方法提交拓扑。
KafkaStormSample.java
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import backtype.storm.spout.SchemeAsMultiScheme;
import storm.kafka.trident.GlobalPartitionInformation;
import storm.kafka.ZkHosts;
import storm.kafka.Broker;
import storm.kafka.StaticHosts;
import storm.kafka.BrokerHosts;
import storm.kafka.SpoutConfig;
import storm.kafka.KafkaConfig;
import storm.kafka.KafkaSpout;
import storm.kafka.StringScheme;
public class KafkaStormSample {
public static void main(String[] args) throws Exception{
Config config = new Config();
config.setDebug(true);
config.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
String zkConnString = "localhost:2181";
String topic = "my-first-topic";
BrokerHosts hosts = new ZkHosts(zkConnString);
SpoutConfig kafkaSpoutConfig = new SpoutConfig (hosts, topic, "/" + topic,
UUID.randomUUID().toString());
kafkaSpoutConfig.bufferSizeBytes = 1024 * 1024 * 4;
kafkaSpoutConfig.fetchSizeBytes = 1024 * 1024 * 4;
kafkaSpoutConfig.forceFromStart = true;
kafkaSpoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka-spout", new KafkaSpout(kafkaSpoutCon-fig));
builder.setBolt("word-spitter", new SplitBolt()).shuffleGroup-ing("kafka-spout");
builder.setBolt("word-counter", new CountBolt()).shuffleGroup-ing("word-spitter");
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("KafkaStormSample", config, builder.create-Topology());
Thread.sleep(10000);
cluster.shutdown();
}
}在编译之前,Kakfa-Storm集成需要ZooKeeper客户端库。Curator 2.9.1版支持Apache Storm 0 . 9 . 5版(我们在本教程中使用)。下载下面指定的jar文件,并将其放在java类路径中。
curator-client-2.9.1.jar curator-framework-2.9.1.jar
包含依赖文件后,使用以下命令编译程序,
javac -cp "/path/to/Kafka/apache-storm-0.9.5/lib/*" *.java
执行
启动Kafka生产者命令行界面(上一章已经解释过),创建一个名为“my-first-topic”的新主题,并提供一些示例消息,如下所示:
hello kafka storm spark test message another test message
现在使用以下命令执行应用程序:
java -cp “/path/to/Kafka/apache-storm-0.9.5/lib/*”:. KafkaStormSample
该应用程序的示例输出如下所示:
storm : 1 test : 2 spark : 1 another : 1 kafka : 1 hello : 1 message : 2